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Abstract: Previous work on DBI inflation, which achieves inflation through the motion of

a D3 brane as it moves through a warped throat compactification, has focused on the region

far from the tip of the throat. Since reheating and other observable effects typically occur

near the tip, a more detailed study of this region is required. To investigate these effects

we consider a generalized warp throat where the warp factor becomes nearly constant near

the tip. We find that it is possible to obtain 60 or more e-folds in the constant region,

however large non-gaussianities are typically produced due to the small sound speed of

fluctuations. For a particular well-studied throat, the Klebanov-Strassler solution, we find

that inflation near the tip may be generic and it is difficult to satisfy current bounds on

non-gaussianity, but other throat solutions may evade these difficulties.
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1. Introduction

The successes of the inflationary paradigm have motivated the construction of a number

of inflationary scenarios from string theory [1 – 6]. A recurrent set of tools in many of

these constructions involves one way or the other the idea of brane inflation [1] and/or

warped throats. In particular, significant warping has shown to play an interesting role

in getting the right scale of inflation [3], in achieving efficient reheating [7, 8], and in the

presence of multiple throats in ensuring the stability of cosmic strings [9] formed at the

end of brane inflation. Perhaps the most interesting application of such warped throats is

in DBI inflation where the warping imposes a position dependent local “speed limit” on

how fast the inflaton can roll1, thus allowing inflation even for steep potentials [10 – 13].

Indeed, warped throats often appear in string theory in the context of flux compact-

ifications [14 – 19]. In addition to stabilizing moduli, background fluxes back-react on the

metric and so strongly warped regions can be formed if the fluxes have support on cycles

that are localized in the compactified space. A particularly well-studied example is the

warped deformed conifold solution of [20, 21]. The throats are generated by turning on

background fluxes along the cycles of a conifold of a Calabi-Yau, which also smooth out

1Branes that nearly saturate this speed limit will be called “relativisitic”.
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the conifold singularity into a smooth S3 “cap” at the tip where the warp factor is ap-

proximately constant [20 – 23]. Far from the capped tip the throat looks like AdS5 × X5

and most studies of DBI [10 – 13, 24] have only considered brane inflation in this region,

and assumed the constant region to be negligible. Since reheating typically occurs when

the brane reaches the tip of the throat [7, 8], it is possible that the last 60 e-folds relevant

for observations may arise from inflation in the capped region of the throat. Therefore

we analyze the nearly constant region of the throat for a generalized warped throat DBI

model, where the constant region is constructed to be large enough that the brane will

spend a significant amount of time (in terms of e-folds) in that region during inflation.

Although the existence of inflation in a constant region is initially an assumption, we find

that inflation in the Klebanov-Strassler [20] throat seems to satisfy this assumption for

weakly warped throats2 and it may be realized in other throat geometries. However, this

class of models tends to suffer from large non-gaussianities, where the exact details de-

pends on the construction of the throat. This does not rule them out as viable options for

inflationary scenarios, but puts constraints on their construction in order to avoid bounds

on non-gaussianities. In addition, our analysis includes how details of the geometry of the

throat are encoded in the observables such as density perturbations and non-gaussianities.

In general this information cannot be separated from other typical slow-roll parameters (i.e.

the shape of the potential and the Hubble scale during inflation), though specific warped

throat compactifications might evade this issue.

Since not many examples of warped throats whose explicit metrics are known, we

will consider a reasonably generic form for the warp factor describing the throat which

reduces to AdS5 × X5 or the Klebanov-Strassler solution in known limits. In addition

to investigating the dynamics and calculating the inflationary observables for a general

warp factor we consider two specific models of DBI inflation in the Klebanov-Strassler

warped throat, labeled by the direction of motion of the D-brane in the throat. In UV

DBI inflation [10, 11] the D-brane falls into the throat towards the tip, while in the IR

DBI model [12] the D-brane starts deep in the throat near the tip and moves towards the

unwarped bulk region.

We find that a sufficient number of e-foldings can occur in the nearly constant region

near the tip in the UV model, provided one can satisfy certain constraints regarding the

development of the tachyon or other stringy effects at the tip. A generic feature of in-

flation in the constant region is that there are large non-gaussian fluctuations produced

during inflation due to the small sound speed of the inflaton near the tip. For the KS

solution, inflation naturally occurs in the constant region of the throat for weakly warped

throats (htip ∼ 10−2) and observational constraints on density perturbations and non-

gaussianities cannot be simultaneously satisfied. It could be possible that for alternative

warped throat compactifications, the predictions may be consistent with current bounds

on non-gaussianities from the WMAP three year data [25].

We also study the IR scenario in the tip and AdS regions and again find that large

non-gaussianities are almost always produced for inflation near the tip. The exception

2which is typically considered in the literature in order for reheating to be efficient [7, 8].

– 2 –



J
H
E
P
0
9
(
2
0
0
6
)
0
7
6

is when the D-brane is between a critical value for the field (to be defined) and the end

of the throat: here the motion of the inflaton is non-relativistic and non-gaussianities

are suppressed (see section 4.3 for more details). For non-gaussianities in IR DBI to be

consistent with observations, the last 50-60 e-folds must occur in the AdS region of the

throat and the Hubble scale during inflation must be lower than H ∼ 1010 GeV.

The paper is organized as follows. In section 2 we review the DBI inflationary scenario

and the Hamilton-Jacobi approach we will be using throughout the paper. In section 3

we investigate DBI inflation near the tip of a generic warped throat and calculate the

observables. In section 4 we review the warped throat solution of [20, 21] and discuss

an approximation to the Klebanov-Strassler throat called the “mass gap.” Here we also

examine the UV and IR DBI inflation models for the mass gap approximation of the KS

throat and discuss the implications. We conclude in section 5. Some details about the

KS throat and non-gaussianities for a generic throat are found in appendices A and B,

respectively.

2. Overview of DBI inflation

We will take the metric for our throat region to be of the form

ds2
10 = f̃(r)−1/2ds2

4 + f̃(r)1/2ds2
6 (2.1)

where r is the transverse radial coordinate between the branes. As was shown in [10], the

acceleration for speed-limited motion we will consider is small so we can treat the Dirac-

Born-Infeld action as a good approximation to the motion of the D3 brane. Rescaling the

radial coordinate as r = φ√
T3

, the DBI action for the motion of the D3 brane as it moves

through the warped throat is

S = −
∫
d4x
√−g

(
f(φ)−1

√
1 + f(φ)gµν∂µφ∂νφ− V (φ)− f(φ)−1

)
. (2.2)

Note that we have assumed that only the RR 4-form flux C4 has components along the

brane and have ignored the flux due to the NSNS 2-form B2. This is consistent with the

SUGRA solutions of [20], where we ignore the B2 contribution because its pullback only

depends on the angular coordinates of the X5 base of the throat, and we will only be

interested in the motion of the D3 brane along the radial coordinate3.

We will consider the following general form for f(φ):

f(φ)−1 = f0 + f2φ
2 + f4φ

4. (2.3)

Our choice of f(φ) is motivated by the geometry of the Klebanov-Strassler (KS) warped

throat, though we shall use this general form of f(φ) for most of the analysis. In the limit

f0 → 0 we no longer have a cutoff throat, since the warp factor f(φ) ∝ f̃(r) does not

approach a constant at the tip of the throat. In later analysis (section 4) we will compare

3The case of considering the angular coordinates at the tip in a slow roll context was considered by [6].

It would be interesting to see if DBI changes this scenario, and we leave this to future work.
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the “AdS” solution (f0 → 0, f2 → 0, f4 = 1
λ) to a “mass gap” solution which models the

tip geometry with coefficients

f0 =
µ4

λ
, f2 =

2µ2

λ
f4 =

1

λ
(2.4)

Now that we have defined the general form of our metric, we consider only spatially

flat cosmologies and fields in our action,

ds2
4 = −dt2 + a(t)2dx2

φ = φ(t) (2.5)

and we will study the resulting FRW cosmology of the warped throat. The Friedmann

equations take the standard form

3H2 =
1

M2
p

ρ (2.6)

2
ä

a
+H2 = − 1

M2
p

p (2.7)

where H = ȧ
a is the Hubble parameter (dots denote derivatives with respect to comoving

time t), and the energy density ρ and pressure p for the DBI Lagrangian are given by

ρ =
γ

f
+ (V − f−1) (2.8)

p = − 1

fγ
− (V − f−1) (2.9)

and γ is defined as

γ ≡ 1√
1− f(φ)φ̇2

. (2.10)

The Greek letter γ was purposely used as this factor is analogous to the Lorentz factor of

special relativity. Notice that the motion of the branes will be constrained by the position

dependent speed limit

φ̇2 ≤ 1

f(φ)
. (2.11)

This will be important when comparing the behavior of φ(t) in the AdS and cutoff throat

geometries. Also notice that ρ and p reduce to the usual expressions in the limit of small

φ̇.

Finally, varying the DBI action with respect to the field results in the equation of

motion for φ,

φ̈+
3f ′

2f
φ̇2 − f ′

f2
+

3H

γ2
φ̇+

(
V ′ +

f ′

f2

)
1

γ3
= 0, (2.12)

where from now on a prime denotes derivative with respect to φ.
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2.1 Hamilton-Jacobi Approach

To simplify our work we shall study the action and the resulting cosmology using the

Hamilton-Jacobi formalism [26]. In the Hamilton-Jacobi approach, the scalar field φ is

viewed as the time variable, thus φ = φ(t) must be monotonic. All of our fields (H, γ, f ,

V ) from now on will be functions of φ unless stated otherwise. Taking the time derivative

of eq. (2.6), and using the equation of motion for φ, we obtain

6HH ′φ̇ = − 1

M2
p

3Hγφ̇2, (2.13)

which, after dividing both sides by φ̇ (permitted by the monotonic behavior of φ), results in

φ̇ = −2M2
p

H ′

γ
. (2.14)

Using the definition of γ, and solving for φ̇ we have

φ̇ =
−2H ′√

1
M4
p

+ 4fH ′2
. (2.15)

Substituting this result back into the Friedmann equation, and using the definition of ρ, a

consistency condition for the potential may be obtained,

V (φ) = 3M 2
pH

2 −
M2
p

f

√
1

M4
p

+ 4fH ′2 +
1

f
. (2.16)

Given a potential V (φ), we can then solve for H(φ), or similarly, choosing an H(φ), we can

find a potential that satisfies the equations above. The latter approach is useful because

once the form of H(φ) is known, we can work backwards to calculate φ̇, integrate to find φ,

and then use H = da/dt
a to integrate and find the form of the scale factor. The disadvantage

of this approach is that one must make an ansatz for H(φ); it is often difficult to choose a

functional form that generates the desired form of the potential, however we will see that

simple choices can be made for potentials of interest for inflation.

3. DBI inflation in a generic warped throat

We would like to solve eqs. (2.15) and (2.16) for a string theory motivated potential, which

will be a function of the field φ. Following [3] we will take the potential to be,

V = V0 + V2φ
2 + V4φ

4 − Vc
φ4
. (3.1)

This form includes the leading renormalizable terms that are symmetric under the Z2

symmetry of the warped throat as well as a Coulomb term which describes the attraction

of a D3 and an D3 brane. We will treat the Vi terms as (almost) arbitrary constants

since their precise form will be fixed by the details of moduli stabilization, α ′ effects, and

non-perturbative contributions to the superpotential; Vc is given by the perturbation to the

– 5 –
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warped background from the D3, which for an asympototically AdS5 ×X5 throat is given

by [3, 24] Vc = v
(T3h4

tip)2

φ4 , where v is a geometric factor of the X5 space. Much progress

has been made recently in understanding the generation of these potentials in specific

geometries which preserves more supersymmetry (such as K3 × T 2/Z2 and T 6/Z2) [27].

The form of the potential is not known in general, however, and we will sidestep the

subtleties involved in these constructions.

Previous work on the UV DBI model [10, 11, 24] have continued the AdS region of

the throat all the way to the tip at φ = 0. Our objective is to analyze the dynamics of the

inflaton near the tip in a more generic warped background, where the space near the tip is

no longer approximately AdS. With the introduction of the generic warp factor in eq. (2.3)

our warped background now approaches a constant (f0) near the tip, which gives us a

region of nearly constant warping. Before we continue we need to make a few assumptions

about this region.

Since our analysis focuses on the region near the tip (φ ≈ 0), we would like to ensure

that the branes are separated by more than a (local) string length r ≥ `sh−1
tip in the region

of interest so we can ignore the development of the tachyon. The nearly constant region

of the tip is defined to be the region where the f0 term dominates the warp factor in

eq. (2.3), φ < φtip =
√

f0

f2
. In order to describe inflation in the nearly constant region

using a supergravity approximation, we require φtip ≥ φs where φs is the value of the

field corresponding to a warped string length. Using the normalization of the inflaton field

φ = r
√
TD3, this translates to requiring

f0 >
m2
sh
−2
tip

gs
f2; (3.2)

since a priori there is no relation between f0 and f2 it is not clear whether this is a

generic feature of warped throats. We will see later that experimental constraints on the

parameters of the mass gap solution to the Klebanov-Strassler throat eq. (2.4) satisfy this

constraint for weakly warped throats (htip ∼ 10−2), i.e. the inflaton will always spend a

measurable amount of time (in terms of e-folds) in the constant region of the throat.

One particular concern is that, as in slow roll inflationary models constructed from

DD̄ pairs, for small φ the Coulomb term in eq. (3.1) can spoil inflation by leading to rapid

change in φ. This can happen when the Coulomb term in eq. (3.1) dominates over the

mass term. To prevent this, we will assume that the mass term is sufficiently large that

the Coulomb term doesn’t dominate until stringy effects take over,

mφ ≥
√
Vc
φ3
s

= v1/2h7
tipg

1/2
s ms (3.3)

where in the last equality we have used the estimate for Vc for an AdS5 ×X5 background

from above, and inserted the field value at which stringy effects become important. Notice

that even for weakly warped throats (htip ∼ 10−2) this lower bound on the mass is very weak

(
mφ
ms
≥ 10−14), and we will assume that it can be easily satisfied. Indeed, for masses near

this lower bound we expect slow-roll inflation [24]; since our intent is to study DBI inflation

we will not be concerned with this case. We have performed a numerical simulation of the

– 6 –
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effects of the Coulomb term during inflation and have found that for inflaton masses larger

than the above bound the Coulomb term is indeed negligible throughout the region where

the supergravity analysis is justified. If the Coulomb term does dominate the potential,

inflation in the constant region quickly ends. However, for inflaton masses smaller than

eq. (3.3) we do not expect DBI inflation at all, so we will not consider this case in this

work.

With a large mass term as expected in DBI inflation, however, one may be worried

that the potential could violate our effective field theory description. In particular, in

order to ignore stringy effects we require V ≤ f(φ)−1m4
s throughout the throat. At the

gluing the warp factor is one (the corresponding value of the field for an asymptotically

AdS throat there is φglue = R+/`sms), and after some algebra we have the restriction

ms/Mp ≥ R+

`s

mφ
Mp
∼ 10−2, where we usedmφ/Mp ∼ 10−5 as is required for sufficient inflation

with the correct level of density perturbations (shown below). This can be challenging

from the point of view of embedding the throat in a compact space because of the large

volume of the throat. However, it is conceivable that explicit warped throats satisfying

these constraints can be constructed (e.g., by exploring warped throats with small angular

volume). We leave this to future work.

With these restrictions on the phase space in mind, we can now solve eqs. (2.15)

and (2.16) analytically. The Hamilton-Jacobi equations are most simply solved by choosing

a particular form for H(φ), and then using this form to solve for the dynamics of φ. While

this choice is motivated by the form of the potential that is generated, it is also well suited

to our analysis since we are looking at late-time behavior (small φ), so we will only be

interested in the leading behavior of H with φ. The choice H(φ) = h1φ, is compatible with

a potential of the form eq. (3.1) where the mass term dominates over all other terms, which

is what we expect for DBI inflation; additional powers of φ can be included (corresponding

to higher order in φ terms in 3.1)) but since we are interested in the leading behavior at

late times we will ignore them. A numerical calculation of eq. (2.16) with the full form of

the potential in eq. (3.1) requires detailed computational analysis that is beyond the scope

of this paper, and would be an interesting topic for future research.

To summarize, to obtain our results we are working under four main assumptions:

• Near the tip of the throat, the warp factor takes the form of eq. (2.3).

• This constant region is larger than a warped string length away from the tip, i.e. we

can ignore stringy effects and treat this with a supergravity approximation.

• The Coulomb term in the potential, eq. (3.1), is subdominant when compared to the

mass term, and thus can be ignored.

• Our choice of H(φ) = h1φ is sufficient to describe the evolution of φ near the tip.

Higher order terms can be dropped since we looking at the region where φ→ 0.

These assumptions are motivated and, as we will see, are satisfied by the Klebanov-Strassler

throat.

– 7 –
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Working with these assumptions, the consistency condition eq. (2.16), together with

eq. (2.3) generates a potential with the following coefficients

V0 = f0(1− 2h1M
2
p

A
) (3.4)

V2 = f2(1−
2h1M

2
p

A
) + 3h2

1M
2
p +

f2h1M
2
pA

f0

V4 = f4(1− 2h1M
2
p

A
) +

f2
2h1M

2
pA

3

4f3
0

+
f4h1M

2
pA

f0
,

where we have defined the combination

A =
f

1/2
0√

1 + f0

4h2
1M

4
p

(3.5)

From our V2 term, we can now solve for the constant h1 to obtain

h1 ≈
mφ√
6Mp

, (3.6)

where we let V2 = 1
2m

2
φ and assumed mφ À f2; this assumption is reasonable since the

inflaton mass must be large in order to trust our analysis near the tip and to be able to

ignore the Coulomb term. We can rewrite the cosmological constant term V0 as

V0 ≈ f0(1−
√

2

3

mφMp

A
); (3.7)

as mentioned above, we will consider V0 to be a tunable parameter that can be set to this

value. In practice, this consistency condition for V0 is not important and is an artifact of

the Hamilton-Jacobi method; the dynamics for the inflaton field are qualitatively similar

as long as the mass term dominates the potential.

To solve the remaining equations of motion we put our general form for the warp factor

into eq. (2.15), which gives us, for small φ

φ̇ = −(A+
1

2

f2A
3

f2
0

φ2) +O(φ4); (3.8)

this leads to a late time behavior

φ(t) =

√
2

f2

f0

A
tan




√
1
2f2A

2

f0
(tf − t)


 (3.9)

where

tf ≡
f0√

1
2f2A2

arctan

[√
f2

2

A

f0
φ0

]
, (3.10)

φ0 is the initial starting point of the brane, and tf is defined by φ(tf ) = 0. Note that this

form for φ(t) is still consistent with our requirement that φ(t) be monotonic; for the above

values of φ(t) the function goes through less than half a period.

– 8 –
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The generic late-time behavior of this solution is different from the previously observed

behavior in an AdS background [10] since for late times,

φ(t) ≈ A(tf − t). (3.11)

Notice that the inflaton reaches the origin in a finite time, as would be expected for a finite

throat. This is to be compared with the AdS solution in which φ(t)→
√
λ/t at late times.

The AdS solution can be obtained from eq. (3.9) through the limit f0, f2 → 0 in eq. (2.3)

and choosing the appropriate late time behavior for tf .

From our solution eq. (3.9) and using our ansatz H = h1φ a straightforward analysis

gives the scale factor and number of e-folds as,

a(t) = a0


cos




√
1
2f2A

2(t− tf )

f0





α

Ne = α log




cos

(q
1
2
f2A2(te−tf )

f0

)

cos

(q
1
2
f2A2(t0−tf )

f0

)




(3.12)

where the exponent is α =
2h1f2

0
f2A3 ; t0 is the initial time and te ≤ tf is the time that

inflation ends and is defined by φ(te) =
√

A

h1− f2A
3

2f2
0

. Depending on the model, inflation may

end before the branes annihilate at the tip of the throat. Our results can be made more

transparent by noting the scale factor and number of e-folds can be written in terms of

φ(t) as follows,

a(t) = a0(A+
1

2

f2A
3

f2
0

φ(t)2)−α/2

Ne =
α

2
ln




1 + 1
2
f2A2

f2
0
φ(ti)

2

1 + 1
2
f2A2

f2
0
φ(te)2


 ≈ α

2
log(2). (3.13)

We simplified the expression for the number of e-folds since we are interested in inflation

starting near the beginning of the tip region, f2

f0
φ2
i ≈ 1 (see the discussion at the beginning

of this section) and ending deep in the tip region, f2

f0
φ2
e ¿ 1. Using the definition of α, we

note that in order to get at least 60 e-folds,

f2 ¿
mφ

Mp
f

1/2
0 . (3.14)

This appears to be in agreement with our earlier constraint on f2 needed to trust our

analysis at the tip. Whether eq. (3.2) or (3.14) is more stringent depends on the details

for the specific model.

– 9 –
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3.1 Inflationary Observables

Now that we have shown that we can generate at least 60 e-folds near the tip in a generically

warped throat, we need to see how the tip dynamics affect the cosmological observables.

Since we are using the Hamilton-Jacobi formalism, it is useful to define a different set of

inflationary parameters that we will use to calculate these observables. We define our DBI

analogy to the slow roll parameters in terms of the Hubble parameter H(φ), where we start

with εD, defined as

ä

a
= H2(φ)(1 − εD) (3.15)

For inflation to occur we must have 0 < εD < 1. Defining the rest of our inflationary

parameters using the conventions of [24]

εD ≡
2M2

p

γ(φ)

(
H ′(φ)

H(φ)

)2

(3.16)

ηD ≡
2M2

p

γ(φ)

(
H ′′(φ)

H(φ)

)
(3.17)

κD ≡
2M2

p

γ(φ)

(
H ′(φ)

H(φ)

γ′(φ)

γ(φ)

)
(3.18)

These are, to leading order in φ,

εD =
2M2

p

φ2γ
≈ 1

h1
(
A

φ2
+

1

2

f2A
3

f2
0

) +O(φ2) (3.19)

ηD = 0 (3.20)

κD =
2M2

p

φ

γ′

γ2
≈ −f2A

3

h1f2
0

+O(φ2). (3.21)

The scalar spectral index ns − 1 = d lnPR
d ln k is given by,

ns − 1 = −4εD + 2ηD − 2κD

= − 4A

h1φ2
+O(φ2) ≈ −4 log(2)

Ne
(3.22)

Note that this gives us a red shifted spectral index for non-vanishing f0, f2; this is in contrast

to DBI in the AdS throat where ns = 1 to all orders in the inflationary parameters [24].

The tensor mode spectral density is

Ph =
2H2

π2M2
p

, (3.23)

the corresponding tensor index is

nt ≈ −2εD

= − 2A

h1φ2
− f2A

3

h1f
2
0

+O(φ2) ≈ −2 log(2)

Ne
(3.24)
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and ratio of power in tensor modes to scalar modes,

r =
16εD
γ

=
8

h2
1M

2
p

(
A2

φ2
+
f2A

4

f2
0

) +O(φ2) (3.25)

=
8

h2
1M

2
p

(
f2A

2

f0
+
f2A

4

f2
0

)

where in the last line we have evaluated r at φtip (recall φtip =
√

f0

f2
is the boundary

between the constant and non-constant regions of the throat). The running of the spectral

indices are

dns
d ln k

≈ d

dNe
(4εD − 2ηD + 2κD)

= − 8A2

h2
1φ

4
− 4f2A

4

h2
1f

2
0φ

2
− 2A4(−4f0f

2
2 + 4f2

0 f4 + 3f2
2A

2)

f4
0h

2
1

+O(φ2)

≈ −8 log(2)

N2
e

(3.26)

dnt
d ln k

≈ 2
d εD
dNe

= − 4A2

h2
1φ

4
− 2f2A

4

h2
1f

2
0φ

2

≈ −4 log(2)

N2
e

(3.27)

(3.28)

where we used d
dNe

= − φ̇
H

d
dφ =

2M2
pH
′

γH
d
dφ for derivatives with respect to the number of

e-folds.

The level of non-gaussianities up to leading powers of γ [35] is given by4,

fNL ≈ 0.32γ2 (3.29)

≈ 0.32

(
1 +

4h2
1M

4
p

f0

)
,

and the level of density perturbations is given by,

δH =
δρ

ρ
=

H

Mp

1√
εDcs

=

√
2h2

1φ
2

A
(3.30)

=

√
2h2

1f0

f2A
=

√
2

log 2

f2

f
1/2
0

N2
e

4This result is generic to DBI inflation and independent of the choice of f and H. See appendix B for

more details.
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We see that in order to get the right level of density perturbations we must choose

f2 ≈
δH
N2
e

f
1/2
0 (3.31)

Comparing this to eq. (3.14), once we have set the density perturbations at the right level,

in order to get enough e-folds near the tip we have the requirement
mφ
Mp
À δH

N2
e

. Since the

right hand side can be quite small, this is not very stringent tuning on the inflaton mass.

Indeed, the implicit lower bound on mφ from the Coulomb term in eq. (3.3) may be more

restrictive in general.

Because the dynamics of the inflaton are different near the tip of a cutoff throat in

comparison to the pure AdS throat, we would like to be able to measure in some way the

warp factor at the tip, f0; we see that the combination,

f0

M4
p

≈ r2δH
128

(3.32)

will allow us to make such a measurement.

However, the primary concern for DBI inflation models with a cutoff throat is that

the non-gaussianities, eq. (3.29), are generically too large as a result of their small sound

speed (In DBI inflation the sound speed cs = 1
γ ). In particular, the current bound on

non-gaussianities from the WMAP three year data set [25] constrains −54 < fNL < 114.

For throats of the Klebanov-Strassler type, f0 = h4
tipm

4
s, so we can write

fNL ≈ 0.32

(
Mp

ms

)4(mφ

Mp

)2

h−4
tip ≈

(
10−6

Gµcs

)2

, (3.33)

where we used µcs ≈ m2
sh

2
tip as the tension of cosmic strings produced at the tip. This

implies that to keep cosmic strings consistent with observational bounds (Gµcs ≤ 10−6)

the non-gaussianities may be observable, fNL ∼ O(1). With htip ∼ 10−2 and ms ∼
(10−2 − 10−3)Mp, even for inflaton masses much smaller than the Planck scale the non-

gaussianities will be quite large. However, an f0 with a different dependence on htip could

potentially have a level of non-gaussianity consistent with observations.

4. Warped compactifications

We will now consider the specific case of the Klebanov-Strassler (KS) throat [20, 21].5 Our

setup is a Type IIB flux compactification on a Calabi-Yau (CY) 3-fold with NS-NS and

R-R fluxes turned on along the internal compact dimensions. As in [20, 21], by turning

on fluxes on the cycles associated with a conifold one can stabilize the dilaton and all the

complex structure moduli. The fluxes generate a strongly warped “throat” due to their

induced D3 charge which is glued to the bulk CY compact space. The fluxes are quantized

5Compact models containing such throats have been discussed in [18], and the corresponding effective

field theory has been explored in [28].
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by:

1

2πα′

∫

A
F(3) = 2πM

1

2πα′

∫

B
H(3) = −2πK, (4.1)

where A and B are the cycles on which the fluxes are supported. The throat is a warped

deformed conifold where the deformation replaces the conifold singularity with an S 3 “cap”.

The metric of the warped deformed conifold is [22, 23] (notice that our notation differs

slightly from the literature):

ds2
10 = f̃−1/2(τ)ηµνdx

µdxν + f̃1/2(τ)ds2
6 (4.2)

where τ is a coordinate along the throat and the warp factor f̃(τ) is defined by

f̃(τ) = 22/3(gsMα′)2ε−8/3I(τ) (4.3)

I(τ) =

∫ ∞

τ

x coth(x)− 1

sinh2(x)
(sinh(2x)− 2x)1/3. (4.4)

The parameter ε−2/3 has units of energy and describes the deformation of the conifold,

which is determined by
∑4

i=1w
2
i = ε2, where wi describe the complex structure. The

undeformed conifold appears in the limit ε→ 0. Near the tip of the throat (τ = 0), which

is the region we will be interested in,

I(τ → 0) = a0 + a1τ
2 (4.5)

where a0, a1, ∼ O(1). We see that the warp factor approaches a constant near the tip,

f̃(τ) = (gsMpα
′)2ε−8/3a0 +O(τ2) = e−8πK/3Mgs +O(τ2). (4.6)

Far from the tip of the throat the geometry looks like an AdS5 × S5 throat with an

exact conifold,

ds2
10 = f̃(r)−1/2(ηµνdx

µdxν) + f̃(r)1/2(dr2 + r2ds2
X5

), (4.7)

and the warp factor takes its AdS form,

f̃(r) =
λ̃

r4
, (4.8)

where λ̃ = R4
+ = 27π

4 `4sgs(MK), R+ is the AdS length scale, and MK = N is the induced

D3-brane charge number from the fluxes. Previous studies of DBI inflation [10, 11, 24]

have considered the motion of a D-brane in an AdS5 × S5 throat. While this metric well

describes the geometry of a throat generated by a stack of D3-branes and provides a good

approximation to the KS throat if one assumes the significant dynamics of the system occur

far from the tip, it does not describe the KS throat near the tip where the warp factor

becomes nearly constant. In particular, previous studies make use of asymptotic behavior
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of the inflaton in the near horizon limit, and it is not clear that these assumptions are

applicable to the case of the warped deformed conifold.

One possible way to remedy this, suggested by [10], is to use a “mass gap” form for

the warp factor,

f̃(r) =
λ̃

(r2 + µ̃2)2
. (4.9)

Notice that in this model, the warp factor is approximately AdS in the region r À µ̃ (close

to the gluing to the Calabi-Yau). Towards the tip, as r becomes very close to zero, the warp

factor is nearly constant, f̃−1 ≈ µ̃4/λ̃. The mass gap parameter µ̃ is chosen to give the

correct warp factor at the tip (φ = 0) such that µ̃ = R+htip, where htip = e−2πK/3Mgs . We

have provided a comparison of the AdS warp factor, the mass gap warp factor, the KS warp

factor, and a log-corrected warp factor f̃(r) = 1
r4 (R4

+ + 4R4
− log( r

R+
)) as in [8, 3, 23, 21]

in figure 1, where we have used the relation r − rtip = ε2/3

61/2

∫ τ
0

dτ ′
K(τ ′) to plot all the warp

factors using the τ coordinate [29] (note K(τ) is defined in eq. (A.5). Note the behavior of

the different warp factors for small τ : both the mass gap and the KS warp factors6 level

out to a finite value near the tip while the AdS warp factor does not.

While the mass gap warp factor does not satisfy the supergravity equations of motion,

we will use it merely as an analytical tool to investigate the behavior of the more compli-

cated Klebanov-Strassler throat. Since they share the same qualitative features, we will

use the simpler mass gap for many of our analytic calculations; a brief analysis of the KS

throat can be found in appendix A where we show that the mass gap solution has the same

qualitative behavior near the tip.

4.1 AdS5 Throat

We will review here the results for DBI inflation in an AdS5 throat [10, 11]. Since the mass

gap warp factor (eq. (4.12)) looks like AdS (eq. (4.8)) for large r, one can consider AdS

space to be the geometry of the throat far from the tip. The warp factor for the AdS space

is [31]

f(φ) =
λ

φ4
(4.10)

where λ = λ̃
T 3
∼ N , and N is the D3 charge generating the throat.

We will consider the same form of the potential as in eq. (3.1), and choose H = h1φ.

Using eq. (2.15) for the AdS warp factor for small φ we have

φ̇ ≈ − φ2

√
λ

(4.11)

which gives us a late time solution of φ(t) →
√
λ
t . It should be noted that the general

solution, eq. (3.9), reduces to this solution in the limit f0 = µ4/λ, f2 = 2µ2/λ and µ →
0, tf → ∞. (The latter is required because the AdS solution does not reach φ = 0 in a

finite time.) A similar calculation as done in section 3.1 will yield the number of e-folds

6Since the log-corrected warp factor diverges for finite τ one must set the warp factor to a constant at

the tip to accurately model the KS throat.
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Figure 1: Plotted are the warp factors for different throat geometries as a function of τ : the

long dashed line is an AdS5 geometry, the thick line is the warp factor for a KS throat with a

log-correction as in [8, 3, 23, 21], the thin red line is the mass gap approximation, and the short

dashed line is the exact KS warp factor. Inset : The region near the tip, τ ∼ 0 is enlarged to show

the differences in the warp factors. Notice that the mass gap approximation models the flattening

of the KS warp factor.

Ne ≈ h1

√
λ, and the level of density perturbations δH ≈ N2

e

5π
√
λ

. The rest of the observables

follow a similar pattern as written above when written in terms of Ne and we will not be

concerned with their details here.

In particular, one should note that in order to get the right level of density pertur-

bations for Ne ∼ 60, λ ∼ 1014 [13]. When viewed as a requirement on the number of D3

charges required to generate the throat this seems quite fine tuned (N ∼ 1014), however

when viewed as a hierarchy between the radius of the S3 at the tip of the throat and the

string scale, it only requires λ1/4 ∼ R+/`s ∼ 103 − 104.

4.2 Mass Gap

As mentioned above, the mass gap form for the warp factor is approximately AdS5 at large

distances and constant near the tip. In terms of the inflaton field φ we have,

f(φ) =
λ

(φ2 + µ2)2
(4.12)

where λ is the same as in the AdS case and µ = R+

`2sg
1/2
s

htip, as can be seen by requiring the
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warp factor eq. (4.9) to be equal to the warping at the tip, and changing variables from r

to φ. The mass gap in terms of the variables f0, f2, f4 is given earlier in eq. (2.4)7.

Now that we have a specific model for the cutoff throat we can evaluate the constraint

eq. (3.2) to evaluate whether stringy effects are important for our analysis; in particular

we find htip ≥
(
`s
R+

)1/2
. Requiring htip ≤ 10−2 (this is to guarantee that there is a warped

region in the compactification) we have R+

`s
≥ 104. Amazingly this is not too different than

the tuning of λ needed to obtain the correct value of density perturbations in the AdS

model. This suggests that in order to get the right level of density perturbations for DBI

inflation in the AdS region of the throat, then µ must also be large since µ ∼ λ1/4. Since

our constant region is large, the brane spends a significant amount of time in that region

and inflation also naturally happens in the constant region of the tip.

One can also verify that even for weakly warped throats (htip ∼ 10−2) the lower bound

on the inflaton mass coming from the Coulomb term eq. (3.3) is mφ/ms ≥ 10−14 and is

easily satisfied.

Plugging the mass gap solution into the Hamilton-Jacobi consistency equation

eq. (2.16), we find,

V0 =
µ4

λ
(1−

2M2
ph1

√
λ

µ2

√
1 +

µ4

4h1λM4
p

)

V2 = 3h2
1Mp +

2µ2

λ
−

2(2h2
1M

2
pλ+ µ4)

λµ2

√
1 +

4h2
1M

2
pλ

µ4

(4.13)

V4 =
1

λ
.

As we will see below, inflation requires h1

√
λ ∼ Ne to be sufficiently large, which means

that eq. (3.6) requires that the inflaton massmφ not be too small. For λ ∼ 1014 this requires

a tuning of
mφ
Mp
≥ 10−5. Notice that this is close to the typical Hubble-scale induced mass

for GUT scale inflation H ∼ 1014 GeV . Together with the requirement that µ < Mp,

which is needed in order to have a warped throat, suggests that the V0 coming from the

coupling of the scalar field to gravity must be negative. This somewhat odd result is due

to the fact that for the warped throat the warp factor f approaches a constant at the tip

of the throat: from eq. (2.8), our energy density ρ obtains a positive constant contribution

from the kinetic energy that must be canceled by a negative V0 in order to satisfy our

ansatz H = h1φ. Therefore our negative V0 is an artifact of our use of the Hamilton-Jacobi

formalism. As mentioned before, this does not trouble us because we have numerically

simulated the equations of motion for a small, positive V0 term and found no change to

the DBI speed-limited behavior of the inflaton.

7Note that we can also write f0, f2, and f4 in terms of the original KS warp factor parameters from

eq. (A.11) for small τ . However, since the mass gap is a good approximation to the behavior of the exact

warp factor we will limit our discussion to the former.
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In terms of the mass-gap parameters our behavior for φ(t) is

φ(t) = µ

√
1 +

µ4

4h2
1λM

4
p

tan


 µ(tf − t)√

λ(1 + µ4

4h2
1λM

4
p


 . (4.14)

As mentioned above, in the limit µ → 0, φ → µ tan(−µt/
√
λ + π/2) →

√
λ/t, and we

regain the late time behavior for the AdS warp factor, where the inflaton takes an infinite

amount of time to reach the origin.

Since the AdS and mass gap throats have different behavior for φ(t) near the tip they

also have different behaviors for the gamma factors as a function of the inflaton,

γ(φ) →
2h1

√
λM2

p

φ2
AdS Warp Throat (4.15)

γ(φ) →
2M2

ph1

√
λ

µ2 + φ2
Cutoff Throat (4.16)

For the AdS solution γ becomes infinite as φ→ 0, but in the mass gap solution it is finite

and large. This will have implications for the non-gaussianities since fNL ∝ γ2.

The number of e-folds for the mass gap solution is given by eq. (3.13) with the appro-

priate values for f0 and f2: Ne ≈ h1

√
λ log(2)

2 . This is approximately the same expression

for the number of e-folds in the AdS case, so fixing h1

√
λ ∼ O(100) will give inflation in

both the AdS and constant part of the throats. Similarly, evaluating the density pertur-

bations at φ ≈ µ, we have the same expression for the density perturbations, δH ≈ N2
e√
λ

, so

yet again fixing the density perturbations for the AdS part of the throat also fixes them

for the constant region as well. To summarize, to fit experiment results we need a large λ,

which forces µ to be large. This is significant because it means that even if inflation begins

in the AdS region (as opposed to starting in the nearly constant region) then the last 60

e-folds of inflation will always be produced in the nearly constant region.

As noted for the general warp factor analysis, however, the primary conflict with

observations comes from the non-gaussianities (eq. (3.29)),

fNL ≈ 0.32
M4
p

µ4
N2
e . (4.17)

Since we require µ < Mp in order to trust our supergravity analysis it appears that large

non-gaussianities are predicted for inflation near the tip. For Ne ∼ 60 we cannot satisfy

experimental results for density perturbations and non-gaussianities simultaneously.

4.3 IR DBI Inflation

The model discussed above is known as UV DBI inflation because the inflaton moves

through the throat from the UV end (large r) to the IR end (small r). This naturally

happens in string constructions because, as we have seen, throats generated by fluxes have

induced D3 charges at their tips; D3 branes are then naturally attracted to the tip of the
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throat where they remain8. D3 branes are then attracted to the D3 at the tip of the throat,

leading to the above action and inflation.

A variation on this model is to start the D3 brane at the tip of the throat [12]. This

can arise when p D3 branes annihilate with the N flux generated D3 charges and produce

N−p D3 branes at the tip. If a D3 brane resides in another throat the attractive potential

between the branes will pull the brane out of the throat. In particular, the potential will

be of the form,

V = V0 −
1

2
m2
φφ

2 = V0 −
1

2
βH2φ2; (4.18)

notice that the mass term is negative, giving the direction of the force which is pulling

the D3 out of the throat; β ≈ 1 generically. The brane then moves from the IR end of

the throat to the UV end of the throat. The moduli potential V0 for the branes will be

the dominant term that drives inflation. The novel part of this scenario is that the brane

begins at the tip of the throat where the warp factor is approximately constant, so the

geometry is important for inflation9. Inflation in the IR model is obtained in a similar

way as the UV model: the speed limit from the DBI action restricts how fast the inflaton

can roll, so even for “relativistic” motion of the inflaton the potential stays approximately

constant and inflation can proceed.

In the IR DBI model during inflation the potential dominates over the “kinetic terms”

in eq. (2.8), which gives us the following Hubble factor

H(φ) =

√
V0 − 1

2βH
2φ2

3M2
p

≈
√

V0

3M2
p

(4.19)

H ′(φ) ≈ −βHφ
6M2

p

, (4.20)

which combined with the Hamilton-Jacobi equations of motion give,

γ =

√
1 +

β2H2φ2

9(f0 + f2φ2 + f4φ4)
(4.21)

φ̇ =

√√√√ f0 + f2φ2 + f4φ4

1 + 9(f0+f2φ2+f4φ4)
β2H2φ2

(4.22)

We will consider the dynamics of inflation in two distinct regions: the first region is when

the warp factor is AdS-like (f(φ)−1 ≈ f4φ
4), and the second is when it is nearly constant

(f(φ)−1 ≈ f0).

Starting with AdS region of the throat, we have

γ ≈
√

1 +
1

9

β2H2

f4φ2
(4.23)

8The D3 branes do not annihilate with the D3 charge at the tip because the charges are separated by

a potential barrier [30]; the tunneling time is very small if the flux numbers are large, so the lifetime of the

state can be tuned to be arbitrarily large.
9If one is able to get 60 e-folds in subsequent AdS region of the throat, however, the tip geometry

becomes less important.
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φ̇ ≈
√
f4φ√

1 + 9f4φ2

β2H2

. (4.24)

For large γ one can solve eq. (4.24) for the inflaton as a function of time,

φ(t) ≈ −
√
λ

t
(1− 9

2β2H2t2
), (4.25)

which is the same as previously found in [12]. As previously calculated in the same paper,

normalization of the density perturbations requires λ ≈ 1014. This has important conse-

quences when we consider the size of γ in this region. For the AdS region the motion of

the inflaton is relativistic since γ ≈
√
λβH
φ , so for small φ, γ (and thus non-gaussianities)

is large. In fact, we notice that for generic inflaton masses (β ∼ 1) and the required

value for λ, we must have φ ≥ 107H/γ at 50-60 e-folds back. To be in agreement with

non-gaussianity measurements (γ ≈ 20) and using the upper bound H ¿ 1010 GeV found

in [13] for IR DBI, trans-Planckian VEVs can be avoided, as opposed to the UV model.

In the constant region of the throat, we have

γ ≈
√

1 +
1

9

β2H2φ2

f0
=

√
1 +

(
φ

φc

)2

(4.26)

φ̇ ≈
√
f0

1√
1 + 9 f0

β2H2φ2

=
√
f0

1√
1 +

(
φc
φ

)2
(4.27)

where we defined φc =
3f

1/2
0
βH for simplicity. Note that φc

φtip
≈ µ

H
√
λ

for the mass gap solution;

as noted above we expect large λ to normalize density perturbations correctly in the AdS

region, so we will assume that φc ¿ φtip. The constant region of the throat can be further

divided up into two regions based on our new scale φc: Region 1 where 0 ¿ φ ¿ φc, and

Region 2 where φc ¿ φ¿ φtip.

From eq. (4.27) we see that in Region 1, γ ≈ 1 and φ(t) ∼ eβHt (where φ → 0 as

t → −∞) so the inflaton is non-relativistic. Indeed, explicit calculation of the number of

e-folds and the inflationary parameters indicates that fine tuning of the inflaton mass β is

needed to get inflation in this region,

η = −β
3

(4.28)

Ne =
1

η
ln(

φf
φi

), (4.29)

where φf and φi are the starting and ending points of the inflaton, respectively. The

maximum value of the field in this region is at the critical value φc, while the minimum

value is at a warped string length φs. Taking f
1/2
0 = h2

tipm
2
s we have

Ne ≤
1

η
ln(

h2
tipg

1/2
s

η

ms

H
) ≈ 1

η
ln(

10−3

η
). (4.30)
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This is the usual slow roll η problem (although with stronger constraints on β due to the

decreased range for φ) and we will not investigate this region further.

In Region 2 near the tip of the throat (φc ¿ φ¿ φtip) the inflaton becomes relativistic

since γ ≈ φ/φc. Using eq. (4.27) one can solve for the motion of the inflaton,

φ(t) =
√
f0(t+

9

2

1

β2H2t
) (4.31)

which is identical to eq. (2.37) in [13]. Here it is clear that the solution of [13] is only

valid in a certain region of the constant part of the throat, and can be combined with the

Region 1 solution to obtain a smooth φ → 0 limit. The number of e-folds and density

perturbations in this region are

Ne =

∫
Hdt =

H

φ̇
∆φ =

H

µ

√
λ (4.32)

δH =
H

Mp

√
γ

ε
≈
(
H

µ

)2√
λ =

N2
e√
λ

(4.33)

where in the last step we inserted the mass-gap parameters. It is possible that in the IR

model some e-folds occur in this region, with the rest of the e-folds occurring in the AdS

part of the throat. One will also generically have problems associated with large non-

gaussianities due to the large value of γ, which near φtip for the mass gap parameters goes

like γ ≈ H
√
λ

µ . As in the AdS case, however, staying below the upper bound on H allows

non-gaussianities within observational limits.

5. Discussion

In this paper we have considered the effects of a cutoff throat on DBI inflation. We focused

on constructions where the brane spends a significant amount of time in a region of nearly

constant warping near the tip of the throat. To study these types of throats we assumed

that the nearly constant region was larger than a string length from the tip (eq. (3.2)).

This may or may not be more stringent than the requirement that we obtain enough e-

folds (eq. (3.14)) and the right level of density perturbations (eq. (3.31)), since the results

depend on the specific geometry of the warped throat. For a weakly warped (htip ∼ 10−2)

Klebanov-Strassler throat, we showed that such assumptions are satisfied.10.

In both the UV and IR models of DBI inflation the geometry near the tip can be

important. In the former, since the tip is the last region the D-brane experiences before

stringy effects (such as annihilation) become important, significant inflation in this region

can affect inflationary observables. In particular, we find that for generically warped throats

60 e-folds of inflation can happen near the tip, however the production of large non-gaussian

fluctuations seems to be a generic prediction. From eq. (3.33) we see that for a small enough

hierarchy between the Planck and string scale, and a large enough hierarchy between the

10For more strongly warped KS throats the region of constant warping is typically dominated by stringy

effects. This can be avoided by a larger radius for the AdS scale of the throat.

– 20 –



J
H
E
P
0
9
(
2
0
0
6
)
0
7
6

inflaton mass and the Planck scale the non-gaussianities can be sufficiently small. It is not

clear, however, if this amounts to a fine tuning of the parameters of the model.

We find that the requirement for enough inflation in the constant region of the Kleba-

nov-Strassler throat, modeled by the mass gap approximation, (R+/`s ≥ 104) is similar to

the requirement that the level of density perturbations for inflation in the AdS throat yield

the correct value (R+/`s ∼ 103−104). This implies that it is important to consider inflation

at the tip for UV DBI inflation models. However, for the mass gap model of the Klebanov-

Strassler throat we find large non-gaussianities, above the observational limits, for all values

of the mass gap parameter µ consistent with our supergravity analysis. As discussed above,

this may be avoided by considering other types of throats and compactifications.

In the IR model of DBI inflation, the geometry near the tip affects the early time

behavior of the inflaton. In particular, we find that very near the tip the inflaton is not

speed limited (i.e. γ ≈ 1) and so, without fine tuning of the inflaton mass, we do not

expect inflation there. Further from the tip, but still in the nearly constant region of the

throat, the inflaton becomes relativistic and the level of non-gaussianities quickly grow

larger. Normalization of density perturbations in both the tip and AdS regions of the

throat requires tuning of the AdS curvature scale as in the UV model, however agreement

with non-gaussianity observations constrains the Hubble scale of inflation to be smaller

than 1013 GeV (as is typical for GUT scale inflation).

Throughout this work we have considered only contributions to the inflaton from the

transverse radial mode between the D-branes - it would be interesting to extend this work

to consider the effects of the angular coordinates on DBI inflation similar to the scenario

of [6]. Furthermore, since the inflationary behavior does not seem to depend on whether we

have a D-brane or D-brane falling into the throat, one could imagine an D-brane attracted

to the tip of the throat by the D3 charge of the fluxes, where it collides with a stack of

other D3 already at the tip. Reheating then occurs in the collision process between the

D3s. Since we have seen that the D-brane in the UV model is highly relativistic at the tip

of the throat, the annihilation [32] and collision process may be significantly altered along

the lines of [33], and may have interesting observational consequences. In addition, the

formation of cosmic strings from the annihilation of highly relativistic branes is a relatively

unexplored subject, and may yield different post-annihilation production and properties

than the non-relativistic case [9, 34]. We hope to return to these issues in the future.
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A. The KS throat

The purpose of this section is to show that the mass-gap solution accurately models the

dynamics near the tip, and is a good qualitative approximation to the full KS throat. For

the warped throat we take the form of the metric used in [22, 23],

ds2
10 = f̃−1/2(τ)ηµνdx

µdxν + f̃1/2(τ)ds2
6 (A.1)

where τ is the separation between the D-branes in the throat and the warp factor f̃(τ) is

defined by

f̃(τ) = 22/3(gsMα′)2ε−8/3I(τ) (A.2)

I(τ) =

∫ ∞

τ

x coth(x)− 1

sinh2(x)
(sinh(2x) − 2x)1/3dx. (A.3)

ε is a small real number that is related the deformation of the warped conifold. If we take

τ → ∞ then we recover the AdS approximation, where τ is redefined in terms of a radial

coordinate r. We are interested in keeping the τ coordinate and observing its behavior

near the tip, so the form of the metric we will use is11

ds2
10 = f̃−1/2(τ)ηµνdx

µdxν + f̃1/2(τ)

(
ε4/3

6K2(τ)
dτ2 + . . .

)
(A.4)

where

K(τ) =
(sinh(2τ)− 2τ)1/3

21/3 sinh(τ)
. (A.5)

The next step is to calculate the DBI action for the KS throat. To do this efficiently

we will use the definitions:

h(τ) =
22/3(gsMα′)2I(τ)ε−4/3

K2(τ)
(A.6)

γ =
1√

1− f(τ)τ̇ 2
(A.7)

The action is then

SKS = −TD3

∫
d4x
√
g
(
f̃−1(τ)

(√
1− h(τ)τ̇ 2 − 1

)
− V (τ)

)
(A.8)

To consider inflation from the radial coordinate τ we will define a canonically normal-

ized scalar field ϕ by expanding the DBI action for small τ̇ ,

SKS ≈
∫
d4x
√
g

(
1

2
TD3

h(τ)

f̃(τ)
τ̇2 + TD3V (τ)

)
(A.9)

=

∫
d4x
√
g

(
1

2
ϕ̇2 + V (ϕ)

)
(A.10)

11We have suppressed the extra coordinates of the compact manifold. See [22] for a detailed account of

the KS metric.
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where τ ≈ K(τ→0)

T
1/2
D3 ε

2/3
ϕ =

(
2
3

)1/3 1

T
1/2
D3 ε

2/3
ϕ for small τ . Rewriting eq. (A.8) in terms of the

new scalar field ϕ:

SKS = −
∫
d4x
√
g
(
f(ϕ)−1(

√
1− f(ϕ)ϕ̇2 − 1)− V (ϕ)

)
. (A.11)

This has the same form as the DBI action considered in eq. (2.2) for the rescaled warp factor

f(ϕ) = f̃(ϕ(τ))/TD3. In the small τ expansion we find f̃(τ)−1 ≈ 2−2/3(gsMα′)−2ε8/3(b0 +

b2τ
2 + b4τ

4), where b0, b2, and b4 are constants of O(1). This warp factor is well ap-

proximated by the mass gap solution after changing to the canonically normalized field

ϕ.

B. Non-gaussianities

In this section we discuss non-gaussianities in DBI inflation for a generic form of the warp

factor. The results of non-gaussianity for general single field inflation can be found in [35].

Here we assume the non-gaussianity is large due to large γ, and so we can adopt the method

of [11].

Using our DBI action (eq. (2.2)), our general warp factor (eq. (2.3)), a FRW metric

for the non-compact space, and a generic form of the potential V = V0 + V2φ
2 + V4φ

4, we

introduce perturbations to our scalar field

φ→ φ(t) + α(x, t). (B.1)

Non-gaussianities come from the third order interactions in our Lagrangian due to the

perturbation α(x, t),

L3 = −a(t)3

[
γ5φ̇

2(f0 + f2φ2 + f4φ4)
α̇3 − γ3φ̇

2a2(f0 + f2φ2 + f4φ4)
α̇(∇α)2 (B.2)

+
γ3φ(f2 + 2f4φ

2)φ̇2

2a2(f0 + f2φ2 + f4φ4)2
α(∇α)2

+
γ3φ̇3

2(f0 + f2φ2 + f4φ4)4

(
−f2

0f2 + 19f2f
2
4φ

8 + 10f3
4φ

10

+φ2(2f0(f2
2 − 3f0f4) + 3f2

2γ
2φ̇2) + 4f4φ

6(3f2
2 + f0f4 + 3f4γ

2φ̇2)

+f2φ
4(3f2

2 + 2f0f4 + 12f4γ
2φ̇2)

)
α̇α2 − 3γ5φ(f2 + 2f4φ

2)φ̇2

2(f0 + f2φ2 + f4φ4)2
α̇2α

+
φ

2γ

(
8(f4(−1 + γ)− V4γ)− 4f4γ

2φ̇2

f0 + f2φ2 + f4φ4

+
γ4φ̇4

(f0 + f2φ2 + f4φ4)4
(f2 + 2f4φ

2)(f0f2 − φ2(f2
2 − 6f0f4 + f4φ

2(f2 + 2f4φ
2)))

−γ
6φ2φ̇6(f2 + 2f4φ

2)3

(f0 + f2φ2 + f4φ4)5

)
α3

]
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The behavior of the non-gaussian fluctuations will be dominated by the small φ (al-

ternatively, late time) behavior of the perturbations near the tip of the throat. Plugging

our value for φ̇ from eq. (2.15), we can evaluate the leading φ behavior of L3. Of the terms

in eq. (B.2), the α̇3 and α̇∇α2 are dominant for small φ, and produce the same results as

in [11, 13]. The results for these terms hold for all choices of warp factor.

Naively the first term from the α̇α2 contribution (∝ −f 2
0f2) can also possibly contribute

to the non-gaussianities. Using the procedure outlined in [11] and evaluating this term

for the mass gap solution, we find that it produces non-gaussianities of O(γ), which is

subleading in the limit of large γ. Since the procedure in [11] only produces the leading

non-gaussianities, O(γ) contributions will be dropped.

References

[1] G. Dvali, S.H.H. Tye, Brane inflation, Phys. Lett. B 450 (1999) 72, [hep-th/9812483].

[2] C.P. Burgess et al., The inflationary brane-antibrane universe, JHEP 07 (2001) 047

[hep-th/0105204];

G.R. Dvali, Q. Shafi and S. Solganik, D-brane inflation, hep-th/0105203;

G. Shiu and S.H.H. Tye, Some aspects of brane inflation, Phys. Lett. B 516 (2001) 421

[hep-th/0106274];

C.P. Burgess, P. Martineau, F. Quevedo, G. Rajesh and R.J. Zhang, Brane antibrane

inflation in orbifold and orientifold models, JHEP 03 (2002) 052 [hep-th/0111025];

H. Firouzjahi and S.H.H. Tye, Closer towards inflation in string theory, Phys. Lett. B 584

(2004) 147 [hep-th/0312020];

C.P. Burgess, J.M. Cline, H. Stoica and F. Quevedo, Inflation in realistic D-brane models,

JHEP 09 (2004) 033 [hep-th/0403119];

N. Iizuka and S.P. Trivedi, An inflationary model in string theory, Phys. Rev. D 70 (2004)

043519 [hep-th/0403203];

A. Buchel and A. Ghodsi, Braneworld inflation, Phys. Rev. D 70 (2004) 126008

[hep-th/0404151];

A. Buchel, Inflation on the resolved warped deformed conifold, hep-th/0601013.

[3] S. Kachru et al., Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055].

[4] J. Garcia-Bellido, R. Rabadán and F. Zamora, Inflationary scenarios from branes at angles,

JHEP 01 (2002) 036 [hep-th/0112147];
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